Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Clark, Tom (Ed.)Abstract Do lower court judges influence the content of Supreme Court opinions in the United Kingdom? Leveraging original data, we analyze opinion language adoption practices of the UK Supreme Court. We advance a theory where the justices’ choices to adopt language from lower court opinions are influenced by Supreme Court-level attributes and Court of Appeal case characteristics. We uncover compelling evidence that UK Supreme Court justices incorporate language extensively from the written opinions of the Court of Appeal of England and Wales. Our findings have significant implications for opinion formulation, doctrinal development, and higher and lower court interactions within comparative courts.more » « less
-
Bondy-Denomy, Joseph (Ed.)ABSTRACT Many bacterial histidine kinases work in two-component systems that combine into larger multi-kinase networks. NahK is one of the kinases in the GacS Multi-Kinase Network (MKN), which is the MKN that controls biofilm regulation in the opportunistic pathogenPseudomonas aeruginosa. This network has also been associated with regulating many virulence factorsP. aeruginosasecretes to cause disease. However, the individual role of each kinase is unknown. In this study, we identify NahK as a novel regulator of the phenazine pyocyanin (PYO). Deletion ofnahKleads to a fourfold increase in PYO production, almost exclusively through upregulation of phenazine operon two (phz2). We determined that this upregulation is due to mis-regulation of allP. aeruginosaquorum-sensing (QS) systems, with a large upregulation of thePseudomonasquinolone signal system and a decrease in production of the acyl-homoserine lactone-producing system,las. In addition, we see differences in expression of quorum-sensing inhibitor proteins that align with these changes. Together, these data contribute to understanding how the GacS MKN modulates QS and virulence and suggest a mechanism for cell density-independent regulation of quorum sensing. IMPORTANCEPseudomonas aeruginosais a Gram-negative bacterium that establishes biofilms as part of its pathogenicity.P. aeruginosainfections are associated with nosocomial infections. As the prevalence of multi-drug-resistantP. aeruginosaincreases, it is essential to understand underlying virulence molecular mechanisms. Histidine kinase NahK is one of several kinases inP. aeruginosaimplicated in biofilm formation and dispersal. Previous work has shown that the nitric oxide sensor, NosP, triggers biofilm dispersal by inhibiting NahK. The data presented here demonstrate that NahK plays additional important roles in theP. aeruginosalifestyle, including regulating bacterial communication mechanisms such as quorum sensing. These effects have larger implications in infection as they affect toxin production and virulence.more » « less
-
Developing a materials perspective of how to control the degradation and negative impact of complex metal oxides requires an integrated understanding of how these nanomaterials transform in the environment and interact with biological systems. Doping with aluminum is known to stabilize oxide materials, but has not been assessed cohesively from synthesis to environmental fate and biological impact. In the present study, the influence of aluminum doping on metal ion release from transition metal oxides was investigated by comparing aqueous transformations of lithium nickel cobalt aluminum oxide (LiNi0.82Co0.15Al0.03O2; NCA) and lithium nickel cobalt oxide (LiNi0.80Co0.20O2; NC) nanoparticles and by calculating the energetics of metal release using a density functional theory (DFT) and thermodynamics method. Two model environmental organisms were used to assess biological impact, and metal ion release was compared for NCA and NC nanoparticles incubated in their respective growth media: moderately hard reconstituted water (MHRW) for the freshwater invertebrate Daphnia magna (D. magna) and minimal growth medium for the Gram-negative bacterium Shewanella oneidensis MR-1 (S. oneidensis). The amount of metal ions released was reduced for NCA compared to NC in MHRW, which correlated to changes in the modeled energetics of release upon Al substitution in the lattice. In minimal medium, metal ion release was approximately an order of magnitude higher compared to MHRW and was similar to the stoichiometry of the bulk nanoparticles for both NCA and NC. Interpretation of the release profiles and modeling indicated that the increase in total metal ion release and the reduced influence of Al doping arises from lactate complexation of metal ions in solution. The relative biological impacts of NC and NCA exposure for both S. oneidensis and D. magna were consistent with the metal release trends observed for minimal medium and MHRW, respectively. Together, these results demonstrate how a combined experimental and computational approach provides valuable insight into the aqueous transformations and biological impacts of complex metal oxide nanoparticles.more » « less
-
The use of engineered nanomaterials, defined as those smaller than 100 nm, in the health, energy, agricultural, and environmental sectors is expanding rapidly. As such, human and environmental exposure to these materials is increasing every day. For example, metal-based nanomaterials, such as nanosilver, have become ubiquitous in antibacterial applications ranging from socks and baby bottles to healthcare materials, such as oral fillings. Engineered nanomaterials are also used as antibacterial agents and adjuvants to improve antibiotic delivery or efficacy. However, even nanomaterials that were not designed to be antimicrobial can possess potent bactericidal activity. Alarmingly, there are clear connections between nanomaterial exposure, metal resistance, and antibiotic resistance and it is crucial that we dramatically improve our understanding of both the toxicity of these materials and their ability to permanently change the organisms that they encounter. Emerging research indicates that microbes are capable of adapting to nanomaterial toxicity, often with the same generalizable mechanisms used to overcome antibiotic toxicity. In this perspective, we highlight existing knowledge about microbial response to engineered nanomaterials and the key outstanding questions that must be addressed.more » « less
-
Video games and immersive, narrative experiences are often called upon to help students understand difficult scientific concepts, such as sense of scale. However, the development of educational video games requires expertise and, frequently, a sizable budget. Here, we report on the use of an interactive text-style video game, NanoAdventure, to communicate about sense of scale and nanotechnology to the public. NanoAdventure was developed on an open-source, free-to-use platform with simple coding and enhanced with free or low-cost assets. NanoAdventure was launched in three languages (English, Spanish, Chinese) and compared to textbook-style and blog-style control texts in a randomized study. Participants answered questions on their knowledge of nanotechnology and their attitudes toward nanotechnology before and after reading one randomly assigned text (textbook, blog, or NanoAdventure game). Our results demonstrate that interactive fiction is effective in communicating about sense of scale and nanotechnology as well as the relevance of nanotechnology to a general public. NanoAdventure was found to be the most “fun” and easy to read of all text styles by participants in a randomized trial. Here, we make the case for interactive “Choose Your Own Adventure” style games as another effective tool among educational game models for chemistry and science communication.more » « less
-
Abstract. The viscosity of secondary organic aerosol (SOA) is needed to improve predictions of air quality, climate, and atmospheric chemistry. Many techniques have been developed to measure the viscosity of micrometer-sized materials at room temperature; however, few techniques are able to measure viscosity as a function of temperature for these small sample sizes. SOA in the troposphere experience a wide range of temperatures, so measurement of viscosity as a function of temperature is needed. To address this need, a new method was developed based on hot-stage microscopy combined with fluid dynamics simulations. The current method can be used to determine viscosities in the range of roughly 104 to 108 Pa s at temperatures greater than room temperature. Higher viscosities may be measured if experiments are carried out over multiple days. To validate our technique, the viscosities of 1,3,5-tris(1-naphthyl)benzene and phenolphthalein dimethyl ether were measured and compared with values reported in the literature. Good agreement was found between our measurements and literature data. As an application to SOA, the viscosity as a function of temperature for lab-generated farnesene SOA material was measured, giving values ranging from 3.1×106 Pa s at 51 ∘C to 2.6×104 Pa s at 67 ∘C. We fit the temperature-dependent data to the Vogel–Fulcher–Tammann (VFT) equation and obtained a fragility parameter for the material of 7.29±0.03, whichis very similar to the fragility parameter of 7 reported for α-pinene SOA by Petters and Kasparoglu (2020). These results demonstrate that the viscosity as a function of temperature can be measured for lab-generated SOA material using our hot-stage microscopy method.more » « less
-
Abstract. Secondary organic aerosol (SOA) constitutes a largefraction of atmospheric aerosol. To assess its impacts on climate and airpollution, knowledge of the number of phases in internal mixtures ofdifferent SOA types is required. Atmospheric models often assume thatdifferent SOA types form a single phase when mixed. Here, we present visualobservations of the number of phases formed after mixing differentanthropogenic and biogenic SOA types. Mixing SOA types generated inenvironmental chambers with oxygen-to-carbon (O/C) ratios between 0.34 and 1.05, we found 6 out of 15 mixtures of two SOA types to result in two phase particles. We demonstrate that the number of phases depends on thedifference in the average O/C ratio between the two SOA types (Δ(O/C)). Using a threshold Δ(O/C) of 0.47, we can predict the phasebehavior of over 90 % of our mixtures, with one- and two-phase particlespredicted for Δ(O/C)<0.47 and Δ(O/C)≥0.47,respectively. This threshold ΔO/C value provides a simple parameterto predict whether mixtures of fresh and aged SOA form one- or two-phase particles in the atmosphere. In addition, we show that phase-separated SOAparticles form when mixtures of volatile organic compounds emitted from realtrees are oxidized.more » « less
An official website of the United States government
